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ABSTRACT: A new coordinate expansion based on a Tay-
lor series is used to derive the one-dimensional approxima-
tion to unsteady isothermal jet flows. The expansion proce-
dure is carried out for an isothermal, Newtonian jet with no
surface tension and air drag, and it can be used to derive a
higher order approximation to the flow field. Two new

formulations have been derived for the eigenvalue problem
for fiber spinning stability for negligible inertia and gravity.
© 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 986–993, 2004
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INTRODUCTION

Many important problems in fluid mechanics involve
the analysis of slender axisymmetric liquid jets. For
example, in the manufacture of textile fibers, a funda-
mental process that must be analyzed is the continu-
ous drawing of liquid filaments to form fibers. The
spinning process can be roughly divided into three
regions:1,2 an extrusion or forming region close to the
spinneret; a molten draw-down region in which a
significant part of the fiber contraction occurs; and a
cold draw-down or finishing region in which the ma-
terial exhibits solid-like behavior. Most analyses of the
spinning process focus on the molten draw-down re-
gion because of its processing importance and its
mathematical tractability. Thus, as pointed out by
Schultz and Davis,3 these usual analyses of the con-
tinuous drawing of liquid fibers are valid in a region
that is sufficiently far from the two ends of the fiber.
The formulation of average boundary conditions at
the beginning and end of the molten draw-down re-
gion avoids the need for analyses of the complicated
flow fields in the extrusion and finishing regions.

For a complete analysis of the fluid mechanics in the
molten draw-down region, the following theoretical
aspects should be considered:

1. Formulation of appropriately simplified forms of
the transport equations.

2. Solution of the steady-state forms of these equa-
tions.

3. Formulation and solution of the eigenvalue prob-
lem that describes the stability of the fiber to
infinitesimal disturbances.

4. Finite-amplitude analysis of the transient re-
sponse of the liquid fibers.

All four of the above aspects have been considered
in a number of investigations.1–14 In particular, much
attention has been given to the problem of the isother-
mal spinning of an incompressible Newtonian fluid
with dominant viscous effects and negligible inertia,
gravity, surface tension, and air drag. It can be argued
that viscous forces will often dominate the drawing
process; however, the assumption of isothermal spin-
ning of a Newtonian liquid is clearly only an approx-
imate representation of a real industrial process. Nev-
ertheless, a thorough analysis of the isothermal spin-
ning of a Newtonian liquid with only viscous effects
considered will permit one to assess the assumptions
used to derive the simplified forms of the transport
equations (by comparing theory and experiment) and
also to gain some insight into the nature of the eigen-
value problem that results from the linear stability
analysis. In addition, the information derived from the
analysis of the simplified problem will provide a foun-
dation for analyzing nonisothermal polymer jets with
complex rheological behavior and with nonnegligible
inertia, gravity, surface tension, and air drag effects.

Although the results for a Newtonian analysis have
been derived by a number of investigators, further
insights into the Newtonian problem (and hence to
more complex fiber spinning problems) can be gained
by considering somewhat different analyses of the
problem, particularly in the derivation of the simpli-
fied forms of the transport equations and in the for-
mulation of the eigenvalue problem for linear stabil-
ity. The two objectives of this article are to formulate a
systematic derivation of a one-dimensional unsteady
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approximation to the full axisymmetic fluid mechan-
ics problem and to derive a simpler form for the
eigenvalue problem for linear stability.

Schultz and Davis3 have previously reviewed pub-
lished derivations of the simplified one-dimensional
equations generally used to analyze jet fluid mechan-
ics. They concluded that all derivations1,2,6 prior to
their investigation were not completely acceptable ei-
ther because a small perturbation parameter was not
identified or because all of the relevant boundary con-
ditions were not satisfied. Schultz and Davis implied
that parametric expansions are better than coordinate
expansions because the coordinate expansions that
had been utilized could not satisfy conditions at all of
the fiber boundaries. Schultz and Davis proposed a
parametric expansion for a steady, axisymmetric jet by
using a slenderness ratio as a perturbation parameter.
A parametric expansion with the slenderness ratio as
a perturbation parameter has also been used for un-
steady jets.13,14 Here, we carry out a systematic deri-
vation of the simplied equations for an unsteady, axi-
symmetric jet by using a Taylor series for the axial
velocity in the radial direction to formulate a coordi-
nate expansion. The coordinate expansion analysis
proposed here does lead systematically to the leading
order equations (the so-called zero-order approxima-
tion)12 for unsteady flow, does provide a method for
calculating higher order corrections, and does satisfy
all relevant boundary conditions to the appropriate
order of approximation.

The eigenvalue problem for the linear stability of an
isothermal Newtonian jet with dominant viscous ef-
fects has been considered by Pearson and Matovich,4

Gelder,5 Kase,7 Fisher and Denn,8 and Petrie.11 Fisher
and Denn solved a linear eigenvalue problem consist-
ing of three ordinary differential equations using di-
rect numerical integration, whereas Gelder used a
finite-difference method to solve two ordinary differ-
ential equations. Petrie solved a two-equation eigen-
value problem essentially analytically, although the
numerical solution of an algebraic equation was used
to calculate the eigenvalues. In the investigations of
Pearson and Matovich and of Kase, there is no direct
study of the eigenvalues. Pearson and Matovich stud-
ied the effects of small perturbations in the boundary
conditions, while Kase developed a transient solution
that is a response to a step change in the tension in the
fiber. In this article, we show that the eigenvalue prob-
lem for an isothermal Newtonian jet with dominant
viscous forces can be representated by a single ordi-
nary differential equation for the axial velocity. If the
take-up velocity of the fiber is specified, the eigen-
value problem can be formulated either as a third-
order ordinary differential equation (with two inlet
boundary conditions and one exit boundary condi-
tion) or as a second-order ordinary differential equa-
tion (with an inlet Neumann condition and an integral

boundary condition). An analytical solution can be
derived for the eigenvalue problem, and the eigenval-
ues can be determined using tabulated functions. If
the take-up force is specified, the jet dynamics are
described by a second-order ordinary differential
equation with two inlet boundary conditions. It is
noted below that this initial value problem has only
the trivial solution.

DERIVATION OF UNSTEADY ONE-
DIMENSIONAL EQUATIONS

In this section, a systematic procedure is used to de-
rive the unsteady, one-dimensional equations describ-
ing the fluid motion of an axisymmetric liquid jet. In
the one-dimensional (or zero-order) approximation,
both the axial velocity and the pressure will be inde-
pendent of radial position in the jet. The proposed
coordinate expansion procedure detailed here can be
used to derive higher order approximations if re-
quired. We consider the unsteady, laminar flow of a
slender, axisymmetric Newtonian jet of length L
which empties into an inviscid gas phase. The liquid
jet has constant density � and constant viscosity �, the
flow field is isothermal, the azimuthal velocity is zero,
and there is no mass transfer to or from the gas phase.
Gravity acts in the axial direction, the inlet axial ve-
locity and jet radius are independent of time, and the
gas phase pressure can be set equal to zero with no
loss of generality. We also assume that both surface
tension and air drag effects are negligible. Note that, if
needed, surface tension effects could be included by
using equations for a surface phase as boundary con-
ditions at the gas–liquid interface rather than using
the jump linear momentum equation. For this prob-
lem, the dimensionless continuity and Navier-Stokes
equations can be written in cylindrical coordinates as
follows:

�V
�r �

V
r �

�U
�z � 0 (1)

Re��V
�t � V

�V
�r � U

�V
�z�

� �
�p
�r � ��2V

�r2 �
1
r

�V
�r �

V
r2 �

�2V
�z2� (2)

Re��U
�t � V

�U
�r � U

�U
�z �

� �
�p
�z � ��2U

�r2 �
1
r

�U
�r �

�2U
�z2 � �

Re
Fr (3)

Here,
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Re �
�LUa

�
(4)

Fr �
Ua

2

gL (5)

where Ua is the average axial velocity at the inlet and
g is the gravitational acceleration. Also, r and z are the
dimensionless radial and axial coordinates, V and U
are the dimensionless radial and axial velocities, t is
the dimensionless time, and p is the dimensionless
pressure. Dimensionless variables are defined in terms
of their dimensional counterparts as follows:

r �
r*
L , z �

z*
L (6)

V �
V*
Ua

, U �
U*
Ua

(7)

t �
t*Ua

L (8)

p �
p*L
�Ua

(9)

The boundary conditions at the gas–liquid interface
can be formulated by utilizing appropriate jump bal-
ances. Because there is no mass transfer between
phases, the jump mass balance reduces to the follow-
ing form

Vnr � Unz � un (10)

where nr and nz are the radial and axial components of
the unit normal vector to the surface pointing into the
gas phase, V and U are the dimensionless liquid ve-
locity components at the gas–liquid interface, and un is
the normal component of the velocity of the moving
surface. The gas–liquid interface is a time-dependent
surface that can be represented by the function f in
dimensionless form as follows:

f � r � R�z, t� � 0 (11)

where the dimensionless jet radius R is defined as R
� R*/L. From eq. (11), the nonzero components of the
unit normal vector are

nr �
1

�1 � ��R
�z �

2� 1/2 (12)

nz � �

�R
�z

�1 � ��R
�z�

2�1/2 (13)

and also

�f
�t � �

�R
�t (14)

Because the normal surface velocity can be repre-
sented by the equation15

un � �

�f
�t

��f � �f�1/2 (15)

introduction of eqs. (12)–(15) into eq. (10) produces the
final result for the jump mass balance:

V �r � R� � U �r � R���R
�z � �

�R
�t (16)

Because there is no stress in the gas phase, and
because there is no mass transfer between phases, the
jump linear momentum equation reduces to

T � n � 0 (17)

where the dimensionless stress T in the liquid phase is
defined as T � LT*/�Ua. Introduction of eqs. (12) and
(13) and utilization of the constitutive equation for an
incompressible Newtonian fluid yield the following
equations for the r and z components of the jump
linear momentum equation, valid at r � R:

p � 2
�V
�r �

�R
�z ��V

�z �
�U
�r � (18)

�V
�z �

�U
�r �

�R
�z ��p � 2

�U
�z � (19)

The � component is satisfied identically.
The problem formulation is completed by writing

down appropriate conditions on the jet axis and on the
inlet and outlet surfaces. Along the jet axis, continuous
behavior in the transport equations requires that

V � 0, r � 0 (20)

�U
�r � 0, r � 0 (21)
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At the inlet surface to the jet, it is assumed that there
is a uniform axial velocity equal to the cross-sectional
average so that

U � 1, z � 0 (22)

At the outlet surface, if the takeup velocity is spec-
ified, the appropriate end condition is

U � DR, z � 1 (23)

where DR is the ratio of outlet to inlet axial velocities.
If the takeup force is specified, then the tension force is
the same everywhere in a Newtonian jet when inertia,
gravity, and surface tension contributions can be ig-
nored.

The above set of equations is exact but difficult to
solve. For slender, axisymmetric jets, we seek a zero-
order solution by writing a Taylor series around r � 0
for the axial velocity at any axial position z:

U�r, z, t� � U�0, z, t�

� ��U
�r �

r�0

r � ��2U
�r2 �

r�0

r2

2 � · · · (24)

If eq. (21) is introduced, this result can be rewritten
as

U�r, z, t� � U0�z, t� � U1�z, t�
r2

2 � O�r3� (25)

and this equation serves to define U0 and U1. This
Taylor series will provide a good representation for
the axial velocity for small values of r. For a slender jet,
r should be small across the entire jet radius so that a
one-term Taylor series should provide an acceptable
approximation to U. Substitution of eq. (25) into the
continuity equation, eq. (1), produces the following
result for V when the equation is integrated and eq.
(20) is utilized:

V � ���U0

�z � r
2 � ��U1

�z � r3

8 � O�r4� (26)

Also, substitution of eqs. (25) and (26) into the radial
component of the Navier-Stokes equation, eq. (2),
yields upon integration:

p � p�0, z, t� � O�r2� � p0�z, t� � O�r2� (27)

Finally, substitution of eqs. (25)–(27) into the axial
component of the Navier-Stokes equation, eq. (3),
leads to the following equation:

Re��U0

�t � U0

�U0

�z � � �
�p0

�z � 2U1 �
�2U0

�z2 �
Re
Fr � O�r�

(28)

Equation (28) is the basic equation that can be used
for the determination of U0 if p0 and U1 can be elimi-
nated. This can be accomplished by using the radial
and axial components of the jump linear momentum
equation.

Introduction of eqs. (25)–(27) into eqs. (18) and (19)
yields the following modified forms of the two com-
ponents of the jump linear momentum equation after
some rearrangements:

p0 � �
�U0

�z � O�R2� (29)

U1R � ��2U0

�z2 � R
2 � 3

�R
�z

�U0

�z � O�R2� (30)

Substitution of these two results into eq. (28) pro-
duces the following form of the axial component of the
Navier-Stokes equation:

Re��U0

�t � U0

�U0

�z � �
Re
Fr � 3

�2U0

�z2 �
6
R0

�R0

�z
�U0

�z (31)

The dimensionless jet radius R is written as R0 be-
cause, as indicated below, it is based on using U0 for
the axial velocity. Substituting eqs. (25) and (26) into
the exact form of the jump mass balance, eq. (16),
gives, after some rearrangement, results which illus-
trate that R0 is directly related to U0 when higher order
terms are neglected:

�A0

�t �
��A0U0�

�z � 0 (32)

A0 � R0
2 (33)

Equations (31) and (32) thus describe the unsteady
dynamics of the isothermal Newtonian jet. These
equations are equivalent to the unsteady-state equa-
tions proposed by Geyling2 when both gravity and
surface tension are excluded. However, Geyling de-
rived his results by simply assuming that the axial
velocity and pressure were independent of r and by
integrating the transport equations over the fiber cross
section, and he did not provide the details of his
derivation.

At steady state, for the special use of Re � 0 and
Fr�1 � 0, the velocity field is given by the following
equations if the takeup velocity is specified:

U0 � e�z (34)
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� � ln DR (35)

For the same special case, the velocity profile takes
an equivalent form if the takeup force is specified:

U0 � e	z (36)

Here, however, 	 is a constant related to the takeup
force.

The above derivation is based on using a coordinate
expansion in terms of a Taylor series for the axial
velocity. The success of the approximation depends on
having a slender jet so that the dimensionless radial
coordinate r is small.

FORMULATION OF EIGENVALUE PROBLEM

A linearized stability analysis for this jet problem can
be carried out in the usual manner by considering
solutions close to the steady solutions and by formu-
lating an eigenvalue problem that can be solved to
determine the fate of infinitesimal perturbations from
the steady flow. We consider the following forms of
eqs. (31) and (32)

Re�� ln U0

�t �
�U0

�z � �
Re

Fr U0
� 3

�2ln U0

�z2

� 3�� ln U0

�z �
� ln A0

�z � � ln U0

�z (37)

1
U0

� ln A0

�t �
� ln U0

�z �
� ln A0

�z � 0 (38)

and propose solutions of the form

U0�z, t� � Us�z��1 � Û�z�eqt� (39)

ln U0 � ln Us � Ûeqt (40)

A0�z, t� � As�z��1 � Â�z�eqt� (41)

ln A0 � ln As � Âeqt (42)

where Us and As are the appropriate steady solutions
and Û and Â represent small perturbations to the
steady flow. Note that we are studying the behavior of
a typical mode of disturbance by considering only a
single component of a series representation. Substitu-
tion of eqs. (39)–(42) into eqs. (37) and (38) produces
the following equations for the perturbed variables:

Re�qÛ � Û
dUs

dz � Us

dÛ
dz �

� �
Re Û
Fr Us

� 3�d2Û
dz2 �

d ln Us

dz �dÛ
dz �

dÂ
dz�� (43)

Âq � Us�dÛ
dz �

dÂ
dz � � 0 (44)

For the special case of Re � 0, Fr�1 � 0, and spec-
ified takeup velocity, eqs. (43) and (44) can be com-
bined with eq. (34) to give the following results:

d2Û
dz2 � ��dÛ

dz �
dÂ
dz � � 0 (45)

Âq � e�z�dÛ
dz �

dÂ
dz � � 0 (46)

Substitution of eq. (46) into eq. (45) gives

e�z
d2Û
dz2 � �Âq � 0 (47)

Differentiation of eq. (47) and substitution of eq. (45)
yield the following third-order ordinary differential
equation:

d
dz �e�z

d2Û
dz2 � � q

d2Û
dz2 � �q

dÛ
dz � 0 (48)

Two of the boundary conditions for this equation
follow from eqs. (22), (23), (34), and (39):

Û�0� � 0 (49)

Û�1� � 0 (50)

In addition, because the inlet radius to the jet is
independent of time:

Â�0� � 0 (51)

Thus, the combination of eqs. (47) and (51) provides
a third boundary condition:

d2Û
dz2 �0� � 0 (52)

Equations (48)–(50) and (52) represent a third-order
eigenvalue problem with eigenvalue q and � � 0. The
operator generated by the third-order differential ex-
pression and the three boundary conditions is not
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self-adjoint. Properties of third-order linear differen-
tial equations are discussed by Gregus.16

A different formulation of the same eigenvalue
problem can be derived by defining a new variable W:

W �
dÛ
dz (53)

Utilization of this definition in eqs. (48) and (52)
leads to a second-order differential equation

d
dz �e�z

dW
dz � � q

dW
dz � �qW � 0 (54)

and to a Neumann inlet condition:

dW
dz �0� � 0 (55)

In addition, integration of eq. (53) and application of
eqs. (49) and (50) produces an integral boundary con-
dition:

�
0

1

Wdz � 0 (56)

Again, the operator generated by the second-order
differential expression and the two boundary condi-
tions is not self-adjoint. Note that in both formulations
of the eigenvalue problem, only a single differential
equation is involved, and this is a new result which
facilitates either numerical or analytical solution of the
eigenvalue problem. The second formulation, with the
integral boundary condition, is used to obtain an an-
alytical solution to the problem in the next section.
Krall17,18 has discussed various aspects of eigenvalue
problems with integral boundary conditions.

In general, the eigenvalue q can be represented as
follows:

q � qR � iqI (57)

For the marginal or neutral state, qR � 0, and there
is a stationary marginal state if qI � 0 (principle of
exchange of stabilities) or an oscillatory marginal state
if qI 	 0 (overstability). Because both versions of the
above eigenvalue problem involve differential opera-
tors that are not self-adjoint, it is difficult to character-
ize the nature of the eigenvalues before actually solv-
ing the eigenvalue problem. However, it is possible to
determine whether the marginal or neutral state is
stationary by setting q � 0 in eq. (48):

d
dz �e�z

d2Û
dz2 � � 0 (58)

For any value of �, the only solution of eq. (58)
subject to eqs. (49), (50), and (52) is

Û � 0 (59)

so that the marginal state cannot be stationary.
A second problem of interest is one for which Re

� 0, Fr�1 � 0, and the takeup force is specified. For
this case, it is easy to show [using eq. (36) and the fact
that the takeup force does not change with time] that
one equation for the perturbed variables is the follow-
ing:

dÛ
dz � 	�Û � Â� � 0 (60)

A second equation for the perturbed variables can
be obtained by combining eqs. (36) and (44):

Âq � e	z�dÛ
dz �

dÂ
dz � � 0 (61)

Differentiation of eq. (60) gives

1
	

d2Û
dz2 �

dÛ
dz �

dÂ
dz � 0 (62)

and substitution of eqs. (60) and (62) into eq. (61)
produces the following second-order differential
equation for Û:

e	z
d2Û
dz2 � q

dÛ
dz � q	Û � 0 (63)

As before, eqs. (22), (36), and (39) produce a Dir-
ichlet initial condition

Û�0� � 0 (64)

and, furthermore, eqs. (51), (60), and (64) yield a Neu-
mann initial condition:

dÛ
dz �0� � 0 (65)

The initial value problem given by eqs. (63)–(65) has
only the solution

Û � 0 (66)

because the only solution of a completely homoge-
neous initial value problem is the trivial solution.19

Consequently, the fiber spinning problem with takeup
force prescribed is always stable. A similar conclusion
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was reached by Pearson and Matovich4 using an en-
tirely different method.

SOLUTION OF EIGENVALUE PROBLEM

The two formulations of the linear eigenvalue prob-
lem for Re � 0, Fr�1 � 0, and specified takeup velocity
both involve a single ordinary differential equation for
the perturbed velocity variable. As noted above, the
fact that the eigenvalue problem has only one differ-
ential equation facilitates either numerical or analyti-
cal solution of the problem. We now show how the
second formulation of the eigenvalue problem can be
used to generate an analytical solution. Two integra-
tions of eq. (54) from z � 0 to z � z and introduction
of eq. (55) give the result

W � � �
0

z

Wdz
 � � exp�q
�

e��z�

 �

0

z

W exp��
q
�

e��z
�dz
 � K (67)

where K is a constant. Equation (67) is a linear, non-
homogeneous Volterra integral equation of the second
kind for W with solution

W � K exp��
q
��


 �exp�q
�

e��z� � qe��z �
0

z

exp�q
a e��z
�dz
� (68)

The integral boundary condition, eq. (56), requires
that the following equation be satisfied:

�1 �
q
�

e��� �
0

1

exp�q
�

e��z�dz

�

exp�q
�

e���
�

�

exp�q
��

�
� 0 (69)

Because q � iqI at neutral stability, this equation leads
to the following two equations that can be used to
determine � and qI:

��
b

be�� cos k
k dk � e��b �

b

be�� sin k
k dk

� cos�be��� � cos b � 0 (70)

� �
b

be�� sin k
k dk � e��b �

b

be�� cos k
k dk

� sin�be��� � sin b � 0 (71)

b �
qI

�
(72)

Equations (70) and (71) can be solved by an iterative
approach using tables for the sine and cosine inte-
grals.20 The values of � and qI determined from these
equations are in good agreement with values of �
� 3.006 and qI � 13.989 calculated by Fisher and
Denn8 by direct numerical integration. Finally, the
perturbed velocity Û can be determined by direct
integration using eqs. (49), (53), and (68):

Û � K exp��
q
����1 �

qe��z

� � �
0

z

exp�q
�

e��z
�dz


�

exp�q
�

e��z�
�

�

exp�q
��

� 	 (73)

Equations (69) and (73) are similar in form to results
presented by Petrie.11

CONCLUDING REMARKS

In this article, we have proposed using a coordinate
expansion based on a Taylor series to derive the one-
dimensional approximation to unsteady isothermal jet
flows. This coordinate expansion does satisfy all rele-
vant boundary conditions, an objection to previous
coordinate expansions. The proposed method can be
used to derive higher order approximations to the
flow field. This can be done if the calculated U0 and U1
are used in a higher order version of eq. (32). As noted
above, the derived leading order equations are not
new since parametric perturbation methods have been
previously used to derive both the steady3 and un-
steady13,14 equations. However, the application of a
coordinate expansion rather than a parametric expan-
sion provides a different method of analyzing un-
steady jet flows that may be advantageous in some
cases.

We have also proposed two new formulations of the
eigenvalue problem for an isothermal, Newtonian jet
with Re � 0, Fr�1 � 0, negligible surface tension and
air drag, and specified takeup velocity. This formula-
tion involves only a single differential equation, facil-
itating either numerical or analytical solution of the
eigenvalue problem. We have also derived a new for-
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mulation for the case of Re � 0, Fr�1 � 0, and specified
takeup force, and also have shown that the flow is
always stable.

The coordinate expansion procedure was carried
out for an isothermal, Newtonian jet with no surface
tension and air drag, and the eigenvalue problem was
limited to this case with the further assumptions of Re
� 0, Fr�1 0. However, the techniques developed here
could be useful when a nonisothermal, viscoelastic jet
is analyzed and/or when inertia, gravity, surface ten-
sion, and air drag effects are not excluded.
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